正弦和余弦
[04-17 00:56:23] 来源:http://www.ketang123.com 九年级数学教案 阅读:9714次
概要:、余弦”.如图 请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在 中, 为直角,我们把锐角 的对边与余边的比叫做 的正弦,记作 ,锐角 的邻边与斜边的比叫做 的余弦,记作 . . 若把 的对边 记作 ,邻边 记作 ,斜边 记作 ,则 , . 引导学生思考:当 为锐角时, 、 的值会在什么范围内?得结论 , ( 为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来. 教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“ 、 ”,经过反复强化,使全体学生都达到目标,更加突出重点. 例1求出如下图所示的 中的 、 和 、 的值. 解:(1)∵斜边 , ∴ , . , . (2) , . , ∴ , . 学生练习教材P6~7中1、2、3题. 让每个学生画含30°、45°的直角三角形,分别求 、 、 和 、 、 .这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对非凡角三角函数值印象很深刻. , , . , , . 例2求下列各式的值: (1) ;(2) . 解:(1) . (2) . 这了使学生熟练把握非凡角三角函数值,这里还应安排六个小题: (1) ;(2) ; (3) ;(4) . (5)若 ,则锐角 . (6)若 ,则锐角 . 在确定每个学生都牢记非凡角的三角函数值后,引
正弦和余弦,http://www.ketang123.com
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习爱好,同时对以下要研究的内容有了大体印象.
(三)教学过程
正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在 中, 为直角,我们把锐角 的对边与余边的比叫做 的正弦,记作 ,锐角 的邻边与斜边的比叫做 的余弦,记作 .
.
若把 的对边 记作 ,邻边 记作 ,斜边 记作 ,则 , .
引导学生思考:当 为锐角时, 、 的值会在什么范围内?得结论 , ( 为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“ 、 ”,经过反复强化,使全体学生都达到目标,更加突出重点.
例1求出如下图所示的 中的 、 和 、 的值.
解:(1)∵斜边 ,
∴ , .
, .
(2) , .
,
∴ , .
学生练习教材P6~7中1、2、3题.
让每个学生画含30°、45°的直角三角形,分别求 、 、 和 、 、 .这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对非凡角三角函数值印象很深刻.
, , .
, , .
例2求下列各式的值:
(1) ;(2) .
解:(1) .
(2) .
这了使学生熟练把握非凡角三角函数值,这里还应安排六个小题:
(1) ;(2) ;
(3) ;(4) .
(5)若 ,则锐角 .
(6)若 ,则锐角 .
在确定每个学生都牢记非凡角的三角函数值后,引导学生思考,“请大家观察非凡角的正弦和余弦值,猜测一下, 大概在什么范围内, 呢?”这样的引导不仅培养学生的观察力、注重力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即
, ( 为锐角).
还发现 的两锐角 、 , , ,正弦值随角度增大而增大,余弦值随角度增大而减小”.
六、布置作业
教材P10中2,3.
预习下一课内容.
补充:(1)若 ,则锐角 .
(2)若 ,则锐角 .
七、板书设计
上一页 [1] [2] [3]
标签:九年级数学教案,九年级数学下册教案范文,九年级数学复习教案,优秀教案 - 数学教案 - 九年级数学教案