二次函数教学设计
[04-17 00:55:49] 来源:http://www.ketang123.com 九年级数学教案 阅读:9570次
概要: 通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣. 重点 探究利用二次函数的最大值(或最小值)解决实际问题的方法. 难点 如何将实际问题转化为二次函数的问题. 教学流程安排 活动流程图 活动内容和目的 活动1 创设情景 引出问题 活动2 分析问题 解决问题 活动3 归纳、总结 活动4 运用新知 拓展训练 活动5 课堂小结 布置作业 教师提出矩形面积问题,引导学生思考,培养学生的求知欲 教师与学生共同分析,寻找解决问题的方法,培养学生的探索精神,让学生初步感受数学的使用价值. 利用二次函数的顶点坐标解决生活中的最大值(或最小值)问题是一种常用的方法. 运用函数知识解决实际问题,提高学生分析问题、解决问题的能力. 师生共同小结,加深对本节课知识的理解. 教学课程设计 问题与情境 师生行为 设计意图 [活动1] 问题: 现有60米的篱笆要围成一个矩形场地, (1)若矩形的长为10米,它的面积是多少? (2)若矩形的长分别为15米、20米、30米时,它的面积分别是多少? (3)从上两问同学们发现了什么? 教师提出问题,学生独立回答.通过几个简单的问题,让学生体会两变量的关系. 在活动中,教师应重点关注: (1)学生是否发现两变量; (2)学生是否发现矩形的长的取值范围; 通过矩形面积的探究,激发学生的学
二次函数教学设计,http://www.ketang123.com
二次函数教学设计
文章
来
知识技能
通过探究实际问题与二次函数关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法.
数学思考
1.通过研究生活中实际问题,让学生体会建立数学建模的思想.
2.通过学习和探究“矩形面积”“销售利润”问题,渗透转化及分类的数学思想方法.
解决问题
通过研究生活中实际问题,体会数学知识的现实意义,进一步认识如何利用二次函数的有关知识解决实际问题.
情感态度
通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣.
重点
探究利用二次函数的最大值(或最小值)解决实际问题的方法.
难点
如何将实际问题转化为二次函数的问题.
教学流程安排
活动流程图
活动内容和目的
活动1 创设情景 引出问题
活动2 分析问题 解决问题
活动3 归纳、总结
活动4 运用新知 拓展训练
活动5 课堂小结 布置作业
教师提出矩形面积问题,引导学生思考,培养学生的求知欲
教师与学生共同分析,寻找解决问题的方法,培养学生的探索精神,让学生初步感受数学的使用价值.
利用二次函数的顶点坐标解决生活中的最大值(或最小值)问题是一种常用的方法.
运用函数知识解决实际问题,提高学生分析问题、解决问题的能力.
师生共同小结,加深对本节课知识的理解.
教学课程设计
问题与情境
师生行为
设计意图
[活动1]
问题:
现有60米的篱笆要围成一个矩形场地,
(1)若矩形的长为10米,它的面积是多少?
(2)若矩形的长分别为15米、20米、30米时,它的面积分别是多少?
(3)从上两问同学们发现了什么?
教师提出问题,学生独立回答.通过几个简单的问题,让学生体会两变量的关系.
在活动中,教师应重点关注:
(1)学生是否发现两变量;
(2)学生是否发现矩形的长的取值范围;
通过矩形面积的探究,激发学生的学习欲望.
[活动2]
你能找到篱笆围成的矩形的最大面积吗?
教师引导学生分析与矩形面积有关的量.
教师深入小组参与讨论.
在活动中,教师应重点关注:
(1)学生是否能准确的建立函数关系;
(2) 学生是否能利用已学的函
数知识求出最大面积;
(3)学生是否能准确的讨论出自
变量的取值范围;
通过运用函数模型让学生体会数学的实际价值,学会用函数的观点认识问题,解决问题.
让学生在合作学习中共同解决问题,培养学生的合作精神.
[活动3]
提问:
由矩形面积问题你有什么收获?
学生思考后回答,
师生共同归纳后得到:
(1)由抛物线y=ax2+bx+c的顶点坐标是最低(高)点,可得当 时,二次函数y=ax2+bx+c有最小(大)值 .
(2)二次函数是现实生活中的模型,可以用来解决实际问题;
(3)利用函数的观点来认识问题,解决问题.
在活动中,教师应重点关注:
(1)学生是否能从面积问题中体会到函数模型的价值;
(2)学生能否利用函数的观点来认识问题,解决问题.
通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值.
[活动4]
问题:
我班某同学的父母开了一个小服装店,出售一种进价为40元的服装,现每件60元,每星期可卖出300件.
该同学对父母的服装店很感兴趣,因此,他对市场作了如下的调查:
如调整价格,每降价1元,每星期可多卖出20件.
请问同学们,该如何定价,才能使一星期获得的利润最大?
问题:
能否说最大利润为6125元吗?
问题:
该同学又进行了调查:
文章
来
www.ketang123.com
二次函数教学设计
文章
来
如调整价格,每涨价1元,每星期要少卖出10件,则此时该如何定价,才能使一星期获得的利润最大?
教师展示问题,某同学的父母该如何定价呢?
学生分组讨论,如何利用函数模型解决问题.教师帮助学生解决问题.
(1)本问题中的变量是什么?
(2)如何表示赚的钱呢?
师生讨论得到:
设每件降价x元,每星期售出的商品的利润y随x的变化:
y=(60-x-40)(300+20x)
=-20x2+100x+6000
自变量x的取值范围:
0≤x≤20
当x=2。5时,y的最大值为6125
[1] [2] 下一页
标签:九年级数学教案,九年级数学下册教案范文,九年级数学复习教案,优秀教案 - 数学教案 - 九年级数学教案